首页 >> 哲学 >> 科学技术哲学
德雷福斯对人工智能的批判仍然成立吗?
2019年12月11日 16:09 来源:《自然辩证法研究》 作者:徐献军 字号

内容摘要:

关键词:

作者简介:

  摘要:德雷福斯曾经提出:人工智能的问题既有科技属性,更有哲学属性。因为全部人工智能工作都依赖一个哲学假设:即人类世界是由可清晰表征的始基构成的,而智能就在某种独立的清晰元素之中。但从海德格尔和梅洛-庞蒂的现象学哲学来看,上述理性主义假设是不能成立的。德雷福斯就以现象学为基础来构建他的人工智能批判。近年来,深度学习算法大放异彩,而人工智能似乎已经完全克服了德雷福斯曾经提出的哲学批判。然而,在深入探查近些年来的人工智能工作之后,我们不难发现:尽管人工智能的神经网络进路的确取得了很大的进步,但它依旧没有放弃人工智能表征主义进路的哲学假设,因而仍然无法摆脱德雷福斯的哲学批判。

  关键词:德雷福斯; 人工智能; 海德格尔; 梅洛-庞蒂; 神经网络;

  作者:徐献军,同济大学人文学院心理学系

  原载:《自然辩证法研究》2019年第01期

 

  在当代哲学对于人工智能的思考当中, 美国现象学家德雷福斯 (Hubert L.Dreyfus) 的批判无疑是最具代表性的观点之一。在他这里, 欧洲的现象学哲学与美国的人工智能技术汇合在了一起。自1960年获聘美国麻省理工学院的助理哲学教授以来, 德雷福斯就直接接触到了当时世界上最为前沿的人工智能研究。明斯基 (Marvin Minsky) 与麦卡锡 (John Mc Carthy) 于1959年, 在麻省理工学院创立了计算机科学与人工智能实验室。当该实验室的学生们, 将人工智能的抱负 (通过给计算机编程, 让它们展现人类的智能) 以及人工智能对于哲学的偏见 (哲学只是先天不足的思考) 传达给德雷福斯时, 他产生了深深的困惑。

  幸运的是, 他的弟弟就是一名任职于美国兰德公司的计算机专家, 而这使他得以越过哲学与人工智能之间的专业鸿沟 (通常的哲学工作者即使对人工智能有兴趣, 也缺乏深入人工智能领域的机会或能力) 。德雷福斯甚至受聘于兰德公司, 而职责就是评估纽厄尔 (Alan Newell) 和西蒙 (Herbert Simon) 在认知模拟领域中的工作。这件事在今天看来仍然是耐人寻味的。我们不知道为什么兰德公司会让一位哲学家, 来评估人工智能的前景。但这件事至少可以启发我们:在今天的人工智能政策制订中, 让哲学家参与讨论应该是有先例的。

  德雷福斯向兰德公司提交的报告是《人工智能与炼金术》 (1965) 。这篇报告最具刺激性的地方就是将当时炙手可热的人工智能, 比喻成了古代的炼金术:“炼金术士们十分成功地从好象是尘土的东西中提炼出了水银, 这使他们在数百年毫无成果地想把铅变成黄金的努力之后, 仍然不相信:在化学层次上, 人们是难以改变金属性质的。为了免遭炼金术士们的命运, 现在我们应该问一问:我们在哪里?现在, 在把更多的时间和经费花到信息加工之前, 我们应该问一问, 人类主体的原型是否表明了计算机语言适合分析人的行为。把人类的智能行为全部分解为离散的规则去支配运算, 是可能的吗?以数字的方式去恰当地分析人类的智能行为是可能的吗?这两个问题的答案是同一个:不可能。”[1]84这篇报告的核心问题是:认知行为之下的信息加工过程, 是否可以被明晰地表达为程序, 然后在数字计算机上得到模拟。德雷福斯根据当时人工智能的挫折指出:数学计算机不能具备人类信息加工的三种基本形式 (边缘意识、本质/偶然区分、歧义容忍) 。但德雷福斯的批判, 不是对人工智能的否定。实际上, 他是提出了一种新的人工智能开发程序, 即根据人脑的结构与运作去设计人工智能 (这实际上是一种具身人工智能的思想) 。

  这篇报告后来扩展为了专著《计算机不能做什么》 (1972) , 以及《计算机仍然不能做的是什么?》 (1992) 。这些专著产生了非常大的影响, 因为它们促使人工智能领域的一些专家 (如厄廷格尔 (Anthony G.Oettinger) 、威诺格拉德 (Terry Winograd) 等) 开始反思人工智能中的哲学假设。今天看来, 德雷福斯专著中有关技术的部分, 可能已经有点过时了, 但其中的哲学部分 (他对海德格尔、梅洛-庞蒂哲学的解释) 仍然有持久的生命力。本文尝试探索两个问题:一, 德雷福斯对人工智能提出批判的哲学依据是什么?二, 在深度学习与强化学习大放异彩的今天, 德雷福斯的批判是否还能成立, 或者说在多大程度上还能成立?对这两个问题的探索, 不仅有助于推进人工智能的哲学研究, 也有助于我们对人工智能的未来保持一个冷静与理智的态度。

   一、德雷福斯的现象学哲学依据

  纵观德雷福斯一生的研究, 尽管他也从人工智能的具体挫折 (如认知模拟与语义信息加工的难题) 出发去展开他对人工智能的批判, 但他的基本立足点是哲学, 尤其是海德格尔与梅洛-庞蒂的现象学哲学。然而, 他对于海德格尔与梅洛-庞蒂现象学哲学的解释, 已经非常不同于海德格尔与梅洛-庞蒂原来的哲学了, 而是德雷福斯自己的哲学, 或者说德雷福斯式的海德格尔与梅洛-庞蒂了。“用海德格尔式的术语来说, 如果说西方形而上学在控制论中达到了它的顶峰, 那么人工智能近来的困难, 揭示的是技术 (technology) 的限度, 而不是工艺 (technological) 的局限。”[2]227

  德雷福斯将海德格尔及梅洛-庞蒂哲学, 与人工智能相联系的原因是:他认为人工智能是西方传统理性主义哲学与现代计算机发明相结合的产物。换言之, 人工智能不是单纯的技术发明, 而是有着悠久的哲学思想传承。人工智能不仅源于哲学, 而且是将理性主义哲学原则推到极致的体现。因此, 人工智能的出现具有重要的哲学意义, 因为人工智能中的成功与挫折, 可以成为判断哲学思想之优劣的一种客观依据。

  在德雷福斯看来, 当苏格拉底在雅典寻找能够阐明专家技能背后之规则的人时, 作为人工智能基础的理性主义思想就产生了。游叙弗伦 (Euthyphro) 是一名虔诚问题专家。苏格拉底要求游叙弗伦说明:判定虔诚行为的规则是什么。但游叙弗伦只能告诉他一些虔诚行为的案例。不光游叙弗伦是如此, 其他的工匠、诗人、政治家都不能阐明他们专家技能背后的规则。苏格拉底由此断定, 这些专家和他自己一样都是无知的。苏格拉底的学生柏拉图, 对上述难题进行了解释。柏拉图说, 专家们已经忘记了让他们成为专家的行事规则, 而哲学家就是要帮这些专家把他们的行事规则回忆起来。但不管专家们是否意识到了这些行事规则, 它们总是在起作用的。现代人工智能 (尤其是知识工程) , 就是要提取专家们的行事规则, 然后把它们编成程序输入到计算机中。[3]19-20

  近现代哲学中, 上述理性主义得到进一步发展。例如, 霍布斯提出推理就是计算, 莱布尼兹说存在着一系列可以表达所有知识的原素 (普遍特征) , 康德说概念就是规则, 维特根斯坦说世界可分析为逻辑原子。尽管纽厄尔、明斯基、西蒙等人工智能专家没有直接学习上述理性主义哲学, 但他们在运用理性主义思维之后, 得到了与哲学家们一样的观点。当然, 他们是把理性主义哲学思维与计算机发明进行了组合。“所有人工智能研究工作的必要前提是:世界必须可表征为本身是由始基构成的结构化描述序列。因此, 哲学和技术在依赖始基时, 都继续确立了柏拉图所探索的那个世界:一个明晰性、确定性和控制都已经得到保证的世界, 一个由数据结构、决策理论和自动化构成的世界。”[2]212

  海德格尔与梅洛-庞蒂对上述理性主义哲学进行了最有力的批判。在梅洛-庞蒂对知觉的分析中, 他把一切存在都是确定的思想, 称为“常识预设” (le prejudge du monde) 。“感知的设定证据不是建立在意识证词之上, 而是建立在常识预设 (未经质疑的世界信念) 之上的。……有两种误解性质的方式:第一种是把性质当作意识的元素 (性质是意识的对象) , 并把性质当作无声的印象, 而且性质始终是有意义的;第二种是相信:这种感知与这种对象在性质层面上是完全的和确定的。和第一种错误一样, 第二种错误也来自于常识预设。”[4]5-6梅洛-庞蒂引用了著名的缪勒-莱尔错觉 (两条原本等长的线条, 因两端箭头的朝向不同, 看起来箭头朝内的线条比箭头朝外的线条要短些) 来说明:实在的景象是模糊与不确定的。假设一切存在都是确定的认识论与心理学假设, 实际上是掩盖了人的主观性。梅洛-庞蒂依据格式塔心理学, 进一步说明了:人的主观性是与身体性相关联的。“如果我的目光不能包围物体, 那么物体就是小的;如果我的目光能充分包围物体, 那么物体就是大的……对于世界的知觉只是我存在场的扩展;知觉不会超越存在场的本质结构, 并且身体总是存在场中的自主体, 而不是存在场的对象。世界是我置身于其中的、开放与不确定的统一体。”[4]317-318

  德雷福斯根据梅洛-庞蒂的身体现象学提出:身体在人类的智能行为中起着关键作用。“把人同机器 (不管机器建造得多么巧妙) 区别开来的, 不是一个独立的、普遍的、非物质的灵魂, 而是一个涉入的、处于情境中的、物质的身体。给人工智能制造最多麻烦的, 正是智能行为的身体方面。”[2]236人类智能活动中那些不可形式化的、不可表征的信息加工活动, 只有对于身体来说才是可能的。例如, 一个人可以很熟练地使用筷子, 却很难马上说出如何使用筷子的操作规则。因此, 在德雷福斯看来, 人工智能能否成功的关键在于:人类能否制造出类人的身体。从目前的神经科学与意识科学水平来看, 这个目标的实现仍然是遥不可及的。

  海德格尔则将传统的理性主义哲学思想称为“计算思维” (rechnende Denken) 。这种思维是理性主义哲学的追求, 并且将在现代计算机技术、信息论或控制论中实现。[2]233为“计算思维”所必须的是规则模型。理性主义哲学家们这么做, 是因为他们想把知识与情境分离开来, 从而获得一种普遍性的知识;而计算机专家这么做, 是因为计算机最适合 (甚至是只能) 处理脱离情境的信息。因此, 计算机所处理的只是一个人工的虚拟世界 (或者说是微世界) ;这个世界由清晰的、可表征的基本事实与规则构成。为了模拟人类的世界, 计算机专家们试图把情境分解为事实与规则, 而他们使用的方法总是刻板与有限制的 (如决策树、学习算法) 。根据海德格尔的“在世界中存在”的思想, 最好的世界模型不是存储在脑中、输入到计算机中的世界模型, 而是世界本身。“因为事实和规则本身是无意义的, 所以要获得海德格尔所称为意义或涉入的东西, 事实和规则必须被赋予相关性。但是在计算机程序中, 用来定义相关性的谓词仍然是无意义的事实, 所以出现了这种让人惊讶的情况:计算机被给予的事实越多, 它就越难计算出哪些事实与当前情境是相关的。……这样的搜索随着事实的增加, 会变得越来越困难, 并最终变得让人绝望。”[5]48

  在深度学习中, 神经网络似乎通过设计者输入的数值 (value) , 模拟了人类的价值或意义系统, 但神经网络终究是知其然, 不知其所以然。因为设计者本人也是如此。“此在……只不过是……牵挂地消释于世界中。”[6]197最适应情境需求的技能行为是无心的 (即无精神表征的) , 而这时人与世界的联系是直接的;只有在无心的技能化应对活动出现中断时, 人们才会进行深思熟虑的活动, 即通过精神表征来间接地建立与世界的联系。换言之, 高层次的表征活动是以低层次的非表征活动为基础的。正如精神病学家们所揭示的那样, 精神分裂症患者的紊乱首先是在其存在底层的。精神分裂症患者不得不承担本该以非表征方式完成的工作, 而这使得他们表现出了极端相反的两种倾向:一是在所有的工作中都表现得极端缓慢, 二是具有异常的缜密性和理智性。换言之, 非表征技能化应付的效率, 远高于有表征的技能化应付。[7]112-113当然, 人工智能设计中的表征活动与精神疾病患者的表征活动是完全不同的———前者是自主的、可控制的, 而后者是不由自主的、不可控制的。

  如上所述, 德雷福斯发现人工智能的基础正是理性主义哲学假设, 因此人工智能与哲学之间是连续的———人们完全可以从哲学的角度去考虑人工智能进路的终极可能性。换言之, 人们可以将人工智能看作是将理性主义哲学原则推到极致的工艺产品。如果海德格尔和梅洛-庞蒂是对的, 那么人工智能的表征主义进路就是错的。因为在海德格尔和梅洛-庞蒂看来, 人类真正的智能是身体性的与无法表征的。德雷福斯批判表征主义人工智能的最根本依据就是:如果理性主义哲学原则在哲学上就已经是不能成立的, 那又何必耗费巨大的人力与物力去推行呢?

作者简介

姓名:徐献军 工作单位:

转载请注明来源:中国社会科学网 (责编:李秀伟)
W020180116412817190956.jpg
用户昵称:  (您填写的昵称将出现在评论列表中)  匿名
 验证码 
所有评论仅代表网友意见
最新发表的评论0条,总共0 查看全部评论

回到频道首页
QQ图片20180105134100.jpg
jrtt.jpg
wxgzh.jpg
777.jpg
内文页广告3(手机版).jpg
中国社会科学院概况|中国社会科学杂志社简介|关于我们|法律顾问|广告服务|网站声明|联系我们